

Turing Machines
Part Two

Outline for Today

● The Church-Turing Thesis
– Just how powerful are TMs?

● What Does it Mean to Solve a
Problem?
– Rethinking what “solving” a problem

means, and two possible answers to that
question.

Recap from Last Time

Turing Machines

● A Turing machine is a program that controls a
tape head as it moves around an infnite tape.

● There are six commands:

– Move direction

– Write symbol

– Goto label

– Return boolean

– If symbol command

– If Not symbol command

● Despite their limited vocabulary, TMs are
surprisingly powerful.

A Sample Turing Machine

● Here’s a sample TM.

● It receives inputs over
the alphabet Σ = {a, b}.

● What strings does this
TM accept?

● Can you write a regex
that matches precisely
the strings this TM
accepts?

Start:
 If Not 'a' Return False

Loop:
 Move Right
 If Not Blank Goto Loop
 Move Left
 Move Left
 If Not 'b' Return False
 Return True

Start:
 If Not 'a' Return False

Loop:
 Move Right
 If Not Blank Goto Loop
 Move Left
 Move Left
 If Not 'b' Return False
 Return True

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25

What Can We Do With a TM?

● Last time, we saw TMs that

– check if a string has the form anbn,

– check if a string has the same number of a’s and b’s and

– sort a string of a’s and b’s.

● Here’s a list of some other things TMs can do; we’ll give you
these TMs with the starter fles for PS8 this week.

– Check if a number is a Fibonacci number.

– Convert the number n into a string of n a’s.

– Check if a string is a tautonym (the same string repeated twice).

– So much more!

● This hints at the idea that TMs might be more powerful than
they look.

New Stuf!

Main Questions for Today:

Just how powerful are Turing machines?

What problems can you solve with a computer?

Main Questions for Today:

Just how powerful are Turing machines?

What problems can you solve with a computer?

Real and “Ideal” Computers

● A real computer has memory limitations: you
have a fnite amount of RAM, a fnite amount of
disk space, etc.

● However, as computers get more and more
powerful, the amount of memory available
keeps increasing.

● An idealized computer is like a regular
computer, but with unlimited RAM and disk
space. It functions just like a regular computer,
but never runs out of memory.

Theorem: Turing machines are equal in
power to idealized computers. That is,
any computation that can be done on a

TM can be done on an idealized computer
and vice-versa.

Key Idea: Two models of computation
are equally powerful if they can

simulate each other.

Simulating a TM

● The individual commands in a TM are simple and perform
only basic operations:

Move Write Goto Return If

● The memory for a TM can be thought of as a string with
some number keeping track of the current index.

● To simulate a TM, we need to

– see which line of the program we’re on,

– determine what command it is, and

– simulate that single command.

● Claim: An idealized computer can simulate a TM.

– The “core” logic for the TM simulator is under ffty lines of
code, including comments.

Simulating a TM

● Because a computer can simulate each
individual TM instruction, an idealized
computer can do anything a TM can do.

● Key Idea: Even the most complicated TM is
made out of individual instructions, and if we
can simulate those instructions, we can
simulate an arbitrarily complicated TM.

Simulating a Computer

● Programming languages provide a set of
simple constructs.

– Think things like variables, arrays, loops,
functions, classes, etc.

● You, the programmer, then combine these
basic constructs together to assemble larger
programs.

● Key Idea: A TM is powerful enough to
simulate each of these individual pieces. It’s
therefore powerful enough to simulate
anything a real computer can do.

A Leap of Faith

● Claim: A TM is powerful enough to simulate any
computer program that gets an input, processes that
input, then returns some result.

● The resulting TM might be colossal, or really slow, or
both, but it would still faithfully simulate the computer.

● We're going to take this as an article of faith in CS103.
If you curious for more details, come talk to me after
class.

Computational
Device

Yep

Nah

input

Can a TM Work With…

Sure! A picture is
just a 2D array of
colors, and a color
can be represented

as a series of
numbers.

“cat pictures?”

Can a TM Work With…

“

Can a TM Work With…

Sure! Music is encoded as a
compressed waveform. That’s

just a list of numbers.

“music?”

Sure! That’s just applying a
bunch of matrices and

nonlinear functions to some
input.

“ChatGPT?”

Just how powerful are Turing machines?

The Church-Turing Thesis claims that

every feasible method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsifable scientifc hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

Regular
Languages CFLs

All Languages

Problems
Solvable by

Any Feasible
Computing

Machine

Regular
Languages CFLs

All Languages

Problems
Solvable by

Turing
Machines

TMs and Computation

● Because Turing machines have the same
computational powers as regular computers, we
can (essentially) reason about Turing machines by
reasoning about actual computer programs.

● Going forward, we're going to switch back and
forth between TMs and computer programs based
on whatever is most appropriate.

● In fact, our eventual proofs about the existence of
impossible problems will involve a good amount of
pseudocode. Stay tuned for details!

Time-Out for Announcements!

Second Midterm Logistics

● Our second midterm exam is tomorrow, May 20th from 6-
9 PM.

● Topic coverage is primarily lectures 06 – 15 (functions
through DFAs & NFAs) and PS3 – PS5 and the frst two
questions of PS6.

– Because the material is cumulative, topics from PS1 – PS2 and
Lectures 00 – 05 are also fair game.

● The exam is closed-book and closed-computer. You can
bring one double-sided 8.5” × 11” sheet of notes with you.

You should have received email about your room and seat
for the exam.

Back to CS103!

Decidability and Recognizability

What problems can we solve with a computer?

What kind of
computer?

What problems can we solve with a computer?

What does it
mean to “solve”
a problem?

The Hailstone Sequence

● Consider the following procedure,
starting with some n ∈ ℕ, where n > 0:
– If n = 1, you are done.
– If n is even, set n = n / 2.
– Otherwise, set n = 3n + 1.
– Repeat.

● Question: Given a natural number n > 0,
does this process terminate?

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

The Hailstone Sequence

● Consider the following procedure, starting with
some n ∈ ℕ, where n > 0:

– If n = 1, you are done.

– If n is even, set n = n / 2.

– Otherwise, set n = 3n + 1.

– Repeat.

● Does the Hailstone Sequence terminate for…

– n = 5? Yes, after 5 steps.

– n = 20? Yes, after 7 steps.

– n = 7? Yes, after 16 steps.

– n = 27? Yes, after 111 steps.
Go to

PollEv.com/cs103spr25
Go to

PollEv.com/cs103spr25

The Hailstone Sequence

● Consider the following procedure, starting with
some n ∈ ℕ, where n > 0:

– If n = 1, you are done.

– If n is even, set n = n / 2.

– Otherwise, set n = 3n + 1.

– Repeat.

● Does the Hailstone Sequence terminate for…

– n = 5? Yes, after 5 steps.

– n = 20? Yes, after 7 steps.

– n = 7? Yes, after 16 steps.

– n = 27? Yes, after 111 steps.

The Hailstone Turing Machine

● Let Σ = {a} and consider the language

 L = { an | n > 0 and the hailstone
 sequence terminates for n }.

● We can build a TM for L as follows:
If the input is ε, reject.

While the string is not a:

If the input has even length, halve the length of
the string.

If the input has odd length, triple the length of
the string and append a a.

Accept.

Does this Turing machine accept all
nonempty strings?

The Collatz Conjecture

● It is unknown whether this process will terminate
for all natural numbers.

– In other words, no one knows whether this TM
always terminates!

● The conjecture (unproven claim) that the hailstone
sequence always terminates is called the Collatz
Conjecture.

● This problem has eluded a solution for a long time.
The infuential mathematician Paul Erdős is
reported to have said “mathematics may not be
ready for such problems.”

An Important Observation

● Unlike fnite automata, which automatically
halt after all the input is read, TMs keep
running until they explicitly return true or
return false.

● As a result, it’s possible for a TM to run forever
without accepting or rejecting.

● This leads to several important questions:

– How do we formally defne what it means to
build a TM for a language?

– What implications does this have about problem-
solving?

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M loops infnitely (or just loops) on a string w if when run on w
it neither returns true nor returns false.

● M does not accept w if it either rejects w or loops on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

● A TM M is called a recognizer for a language L over Σ if
the following statement is true:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

● A language L is called recognizable if there is a recognizer
for it.

● If you are absolutely certain that w ∈ L, then running a
recognizer for L on w will (eventually) confrm this.

– Eventually, M will accept w.

● If you don’t know whether w ∈ L, running M on w may
never tell you anything.

– M might loop on w – but you can’t diferentiate between “it’ll
accept if you wait longer” and “it will never come back with an
answer.”

● Does this feel like “solving a problem” to you?

Recognizers and Recognizability

● The hailstone TM M we saw earlier is a recognizer for
the language

L = { an | n > 0 and the hailstone
 sequence terminates for n }.

● If the sequence does terminate starting at n, then M
accepts an.

● If the sequence doesn’t terminate, then M loops
forever on an and never gives an answer.

● If you somehow knew the hailstone sequence
terminated for n, this machine would (eventually)
confrm this. If you didn’t know, this machine might not
tell you anything.

Recognizers and Recognizability

● Earlier this quarter you explored sums of
fve cubes. Now, let’s talk about sums of
three cubes.

● Are there integers x, y, and z where…
– x3 + y3 + z3 = 10? Yes! x = 2, y = 1, z = 1.
– x3 + y3 + z3 = 11? Yes! x = 3, y = -2, z = -2.
– x3 + y3 + z3 = 12? Yes! x = 7, y = 10, z = -11.
– x3 + y3 + z3 = 13? Nope!

Recognizers and Recognizability

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25

● Earlier this quarter you explored sums of
fve cubes. Now, let’s talk about sums of
three cubes.

● Are there integers x, y, and z where…
– x3 + y3 + z3 = 10? Yes! x = 2, y = 1, z = 1.
– x3 + y3 + z3 = 11? Yes! x = 3, y = -2, z = -2.
– x3 + y3 + z3 = 12? Yes! x = 7, y = 10, z = -11.
– x3 + y3 + z3 = 13? Nope!

Recognizers and Recognizability

● Surprising fact: until 2019, no one knew whether
there were integers x, y, and z where

x3 + y3 + z3 = 33.

● A heavily optimized computer search found this
answer:

x = 8,866,128,975,287,528
y = -8,778,405,442,862,239
z = -2,736,111,468,807,040

● As of early 2025, no one knows whether there are
integers x, y, and z where

x3 + y3 + z3 = 114.

Recognizers and Recognizability

● Consider the language

L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x3 + y3 + z3 = n }

● Here’s pseudocode for a recognizer to see whether
such a triple exists:

for max = 0, 1, 2, …
 for x from -max to +max:
 for y from -max to +max:
 for z from -max to +max:
 if x3 + y3 + z3 = n: return true

● If you somehow knew there was a triple x, y, and z
where x3 + y3 + z3 = n, running this program will
(eventually) convince you of this.

● If you weren’t sure whether a triple exists, this
recognizer might not be useful to you.

Recognizers and Recognizability

Recognizers and Recognizability

● The class RE consists of all recognizable languages.

● Formally speaking:

RE = { L | L is a language and there’s a recognizer for L }

● You can think of RE as “all problems with yes/no answers
where “yes” answers can be confrmed by a computer.”

– Given a recognizable language L and a string w ∈ L, running
a recognizer for L on w will eventually confrm w ∈ L.

– The recognizer will never have a “false positive” of saying
that a string is in L when it isn’t.

● This is a “weak” notion of solving a problem.

● Is there a “stronger” one?

Deciders and Decidability

● Some, but not all, TMs have the following
property: the TM halts on all inputs.

● If you are given a TM M that always halts, then
for the TM M, the statement “M does not
accept w” means “M rejects w.”

Accept

Reject
 halts (always)

does not accept

does not reject

Deciders and Decidability

● A TM M is called a decider for a language L over Σ if the
following statements are true:

∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

● A language L is called decidable if there is a decider for it.

● A decider M for a language L accepts all strings in L and
rejects all strings not in L.

● A decider M for a language L is a recognizer for L that halts
on all inputs.

● Intuitively, if you don’t know whether w ∈ L, running M on
w will “create new knowledge” by telling you the answer.

● This is a “strong” notion of “solving a problem.”

Deciders and Decidability

● The hailstone TM M we saw earlier is a recognizer for
the language

L = { an | n > 0 and the hailstone
 sequence terminates for n }.

● If the hailstone sequence terminates for n, then M
accepts an. If it doesn’t, then M does not accept an.

● We honestly don’t know if M is a decider for this
language.

– If the hailstone sequence always terminates, then M
always halts and is a decider for L.

– If the hailstone sequence doesn’t always terminate, then
M will loop on some inputs and isn’t a decider for L.

Deciders and Decidability

● While no one knows whether there are
integers x, y, and z where

x3 + y3 + z3 = 114,

it is very easy to fgure out whether there
are integers x, y, and z where

x2 + y2 + z2 = 114.
● Take a minute to discuss – why is this?

● Consider the language

L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x2 + y2 + z2 = n }.

● Here’s pseudocode for a decider to see whether
such a triple exists:

for x from 0 to n:
 for y from 0 to n:
 for z from 0 to n:
 if x2 + y2 + z2 = n: return true
return false

● After trying all possible options, this program will
either fnd a triple that works or report that none
exists.

Deciders and Decidability

Deciders and Decidability

● The class R consists of all decidable languages.

● Formally speaking:

R = { L | L is a language and there’s a decider for L }

● You can think of R as “all problems with yes/no
answers that can be fully solved by computers.”

– Given a decidable language, run a decider for L and see
what happens.

– Think of this as “knowledge creation” – if you don’t
know whether a string is in L, running the decider will,
given enough time, tell you.

● The class R contains all the regular languages, all the
context-free languages, most of CS161, etc.

● This is a “strong” notion of solving a problem.

R and RE Languages

● Every decider for L is also a recognizer for L.

● This means that R ⊆ RE.

● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confrm “yes” answers to

a problem, can you necessarily solve that
problem?

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?

Unanswered Questions

● Why exactly is RE an interesting class of
problems?

● What does the R ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● We'll see the answers to each of these in

due time.

Next Time

● Emergent Properties
– Larger phenomena made of smaller parts.

● Universal Machines
– A single, “most powerful” computer.

● Self-Reference
– Programs that ask questions about

themselves.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

